New Subcluster of HEV Genotype 3 Strains Linked to the First Confirmed Swiss Case of Foodborne Hepatitis E Infection

Claudia Bachofen¹, Jakub Kubacki¹, Marco Jermini², Petra Giannini³, Gladys Martinetti³, Paolo Ripellino⁴, Enos Bernasconi⁵, Cornel Fraefel¹ and Roger Stephan**

¹Institute for Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
²Cantonal Laboratory, Bellinzona, Switzerland
³EOC, Microbiology Department, EOLAB, Bellinzona, Switzerland
⁴EOC, Neurology Department, Neurocenter of Southern Switzerland, Ospedale Civico, Lugano, Switzerland
⁵EOC, Internal Medicine and Infectious Diseases Department, Ospedale Civico, Lugano, Switzerland

Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland

Abstract
We describe the first confirmed foodborne Hepatitis E virus (HEV) infection in Switzerland linked to the consumption of a raw sausage (“mortadella di fegato cruda” type) containing pig liver and the appearance of a new “Swiss” subcluster of genotype 3 HEV strains.

Case Report
A 78-year-old male was hospitalized for 4 days in Lugano (canton Ticino, Southern Switzerland) in October 2016. The patient came to the Emergency Ward for extreme fatigue, severe jaundice and dark urine, without preceding fever or flu-like symptoms and without any abdominal pain. Laboratory tests at admission suggested an acute hepatitis (ALAT 3519 U/L, ASAT 2475 U/L, ALP 341 U/L, total bilirubin 117 μmol/L, GGT 578 U/L). Abdomen ultrasound and CT scan excluded cholelithiasis, suggesting hepatitis. Serological tests for HBV, HCV, and CMV were negative, and acute hepatitis E was diagnosed based on both IgM and IgG positivity. During hospitalization, deambulation and appetite were normal, and no pain was claimed. After four days the symptoms improved. A patient's stool sample was collected within ten days from symptoms onset. Based on a questionnaire, the patient mentioned that he used to consume on a regular basis raw meat products (especially pork sausages from the mordadella di fegato type).

Food Products Available for Microbiological Testing
We analysed samples from two raw cured sausages produced with raw liver from pigs (mortadella di fegato cruda). Both samples were sold in the same butcher shop. The first sample was brought by the patient and analysed on November 07, 2016, whereas the second sample was officially taken by food safety authority and analysed on January 24, 2017.

Microbiological Testing
The food products were processed as described by Szabo et al. [1]. Five grams of manually defatted mortadella were placed in an 80 ml sterile filter bag (Interscience by Axon Lab, Baden-Dättwil, Switzerland) and 10 µl of a Mengovirus stock as a process control (Mengovirus Extraction Control kit, bioMérieux, Geneva, Switzerland) were added and incubated at room temperature for 5 min. Thereafter, the sample was homogenized with 7 ml of TRI Reagent® (Lucerna-Chem AG, Luzern, Switzerland) using a blender (MiniMix®, Interscience by Axon Lab, Baden-Dättwil, Switzerland) for 2 min. The rinse fluid was removed via the filter compartment of the bag and centrifuged at 10,000xg for 20 min at 4°C to pellet residual food particles. A total of 1.4 ml chloroform (0.2 ml/ml TRI Reagent®) was added to the clarified supernatant and mixed for 15 sec. After incubation for 15 min at room temperature, samples were centrifuged at 10,000xg for 15 min at 4°C. The nucleic acids of a total of 1 ml of the aqueous phase containing the viral RNA were extracted using the NucliSENS® easyMAG system (bioMérieux, Geneva, Switzerland) according to the manufacturer's instructions and eluted in 60 µl of elution buffer. The extracts were either freeze-stored or immediately used for the viral RNA amplification. The quantitative real-time RT-PCR for HEV and Mengovirus were performed with commercial kits (ceeramTools®, Mengo Extraction Control and hepatitis@ceeramTools®, bioMérieux, Geneva, Switzerland) according to the manufacturer instructions, and eluted in 60 µl of elution buffer. The extracts were either freeze-stored or immediately used for the viral RNA amplification. The quantitative real-time RT-PCR for HEV and Mengovirus were performed with commercial kits (ceeramTools®, Mengo Extraction Control and hepatitis@ceeramTools®, bioMérieux, Geneva, Switzerland) according to the manufacturer instructions, and eluted in 60 µl of elution buffer. The extracts were either freeze-stored or immediately used for the viral RNA amplification.

Rec: September 24, 2017; Acc: December 27, 2017; Pub: December 30, 2017
*Corresponding author: Roger Stephan, Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zurich, Winterthurerstrasse 272, CH-8057 Zurich, Switzerland, Tel: +41 44 635 8651; Fax: +41 44 635 8908; E-mail: roger.stephan@uzh.ch

Patient's fecal samples were diluted prior to RNA extraction as follows: one loop of sample was suspended in 1 ml of sterile water and centrifuged 1 min at 10,000 rpm. Total RNA from the supernatant was extracted with the QIAGEN Viral RNA Mini Kit following the instructions provided by the manufacturer (Qiagen GmbH Germany).

RNA from patient's serum samples was extracted with the same kit without previous manipulations.

Sequencing and Phylogenetic Analysis

RNA from the fecal sample and the sausage were reverse-transcribed using the RevertAid H minus first strand cDNA synthesis kit (ThermoFisher, Reinach, Switzerland) following manufacturer's instructions. The cDNA was treated with RNase H (New England Biolabs, BioConcept, Allschwil, Switzerland) for 20 min at 37°C to remove remaining RNA and a second strand was synthesised using Klenow fragment,exo- (ThermoFisher, Reinach, Switzerland) according to the instructions. During both, first and second strand cDNA synthesis, a tagged random primer was added to the reaction mixture (5'-GCTGGAGCTCTGAGTCATC NNNNNN-3') to be incorporated in the growing cDNA strand. The double stranded cDNA was purified using the QIAquick PCR Purification kit (QIAGEN, Hombrechtikon, Switzerland). In the following sequence-independent single primer amplification (SISPA), the tag sequence (5'-GCTGGAGCTCTGAGTCATC-3') was used to prime unspecific amplification in a PCR reaction using Hotstart Taq Polymerase (QIAGEN, Hombrechtikon, Switzerland) according to manufacturer's instruction in 18 cycles. The amplified DNA was purified using the PureLink DNA PCR Micro kit. The amplicons were subjected to NGS library preparation at the Functional Genomic Centre Zurich using the NebNext Ultra II library preparation kit and the NebNext barcoding kit for Illumina (both New England Biolabs, BioConcept, Allschwil, Switzerland). A paired-end next generation sequencing run of 2 x 150 nt read-length was performed using the Illumina NextSeq500 machine and a mid-output flowcell. After quality-trimming, the reads were aligned to a manually prepared fasta database containing all available full-length Hepatitis E genomes of the genotypes 3 and 4 retrievable from GenBank using SeqMan NGen v14 software (DNASTAR Lasergene, Madison, USA). The 39 and 69 nt length of the 28 sequences was considered as not many mismatches or even the same ambiguity. Hence, it is very likely that the two isolates belong to the same virus strain. Interestingly, while this strain clearly belongs to HEV-3 and is closely related to the strain SW/16-0282 (95% identity), it showed only 88% identity to other HEV full-length sequences. The phylogenetic tree reveals that the three Swiss HEV isolates form a distinct cluster within HEV-3. This is supported by high bootstrap values (Figure 1). While our two isolates are derived from the canton Ticino in Southern Switzerland, the isolate SW/16-0282 originates from Central Switzerland, north of
New Subcluster of HEV Genotype 3 Strains Linked to the First Confirmed Swiss Case of Foodborne Hepatitis E Infection

Only Title

In the Alps. Since these three isolates are the only full-length sequences of Swiss HEV strains, analysis of more viruses from different regions of Switzerland will be necessary to confirm the existence of a Swiss-specific HEV-3 subcluster.

In humans, clinical symptoms of hepatitis E are indistinguishable from other forms of acute hepatitis. The case fatality rate among patients is generally below 1% to 5%, with the exception of pregnancy where rates up to 25% have been reported [6]. In Switzerland, hepatitis E is not notifiable; therefore, the exact number of cases is unknown. Nevertheless, there are so far two published studies about the seroprevalence of HEV in the blood donor population. The seroprevalence depending on the assay which was used is 5% to 20% [7,8]. Recently, in Germany, a neighboring country, the number of notified hepatitis E cases has risen steeply. In 2017, 4,013 cases were reported (https://survstat.rki.de/) with a significant increase compared to 607 cases in 2014 (Robert Koch Institute, 2015). Antibodies against HEV have been found in both the general population [8,9] and — with increased prevalence — in individuals with occupational exposure to swine and wild boars [10-12].

In Switzerland, a quantitative risk assessment following the Codex Alimentarius principles was recently performed in order to predict the exposure of consumers to hepatitis E virus through food consumption [13]. Pork products containing pork liver, in particular those sold raw were identified as posing the highest risk for the consumer.

Figure 1: Phylogenetic analysis of HEV-1, 2, 3 and 4 was performed using Kimura-2 parameter and Neighbor-joining methods, based on complete sequences (excluding the non-coding genome ends). Numbers represent bootstrap values. The branch length is representative for the evolutionary distance (scale of substitution rate given). The new Swiss isolates (black circles) were compared to reference sequences from GenBank (open circles).

Acknowledgments

Claudio Gobbi (MD/PD) and Claudio Staedler (MD) from the Neurocenter of Southern Switzerland, Ospedale Civico, Lugano for their clinical advices and support and Lorenzo Leggeri from the Cantonal Laboratory, Bellinzona for the analytical support.

Authors’ Contributions

• Claudia Bachofen, Jakub Kubacki, Cornel Fraefel: sequencing and phylogenetic analysis
• Marco Jermini, Petra Giannini: leading microbiological testing of food, information exchange between state authority and hospital
• Gladys Martinetti, Paolo Ripellino, Enos Bernasconi: clinical team
• Roger Stephan: scientific and coordination support; information exchange between state authorities and university, writing the manuscript

All authors have read and commented on the manuscript.

References

2. Vina-Rodriguez A, Schlosser J, Becher D, Kaden V, Groschup MH,
New Subcluster of HEV Genotype 3 Strains Linked to the First Confirmed Swiss Case of Foodborne Hepatitis E Infection

